Виктор Кулигин

Раскрытие содержания и конкретизация понятий должны опираться на ту или иную конкретную модель взаимной связи понятий. Модель, объективно отражая определенную сторону связи, имеет границы применимости, за пределами которых ее использование ведет к ложным выводам, но в границах своей применимости она должна обладать не только образностью, наглядностью и конкретностью, но и иметь эвристическую ценность.

Многообразие проявлений причинно-следственных связей в материальном мире обусловило существование нескольких моделей причинно-следственных отношений. Исторически сложилось так, что любая модель этих отношений может быть сведена к одному из двух основных типов моделей или их сочетанию.

а) Модели, опирающиеся на временной подход (эволюционные модели). Здесь главное внимание акцентируется на временной стороне причинно-следственных отношений. Одно событие – «причина» – порождает другое событие – «следствие», которое во времени отстает от причины (запаздывает). Запаздывание – отличительный признак эволюционного подхода. Причина и следствие взаимообусловлены. Однако ссылка на порождение следствия причиной (генезис), хотя и законна, но привносится в определение причинно-следственной связи как бы со стороны, извне. Она фиксирует внешнюю сторону этой связи, не захватывая глубоко сущности.

Эволюционный подход развивался Ф. Бэконом, Дж. Миллем и др. Крайней полярной точкой эволюционного подхода явилась позиция Юма. Юм игнорировал генезис, отрицая объективный характер причинности, и сводил причинную связь к простой регулярности событий.

б) Модели, опирающиеся на понятие «взаимодействие» (структурные или диалектические модели). Смысл названий мы выясним позже. Главное внимание здесь уделяется взаимодействию как источнику причинно-следственных отношений. В роли причины выступает само взаимодействие. Большое внимание этому подходу уделял Кант, но наиболее четкую форму диалектический подход к причинности приобрел в работах Гегеля. Из современных советских философов этот подход развивал Г.А. Свечников , который стремился дать материалистическую трактовку одной из структурных моделей причинно-следственной связи.

Существующие и использующиеся в настоящее время модели различным образом вскрывают механизм причинно-следственных отношений, что приводит к разногласиям и создает основу для философских дискуссий. Острота обсуждения и полярный характер точек зрения свидетельствуют об их актуальности .

Выделим некоторые из дискутируемых проблем.

а) Проблема одновременности причины и следствия. Это основная проблема. Одновременны ли причина и следствие или разделены интервалом времени? Если причина и следствие одновременны, то почему причина порождает следствие, а не наоборот? Если же причина и следствие неодновременны, может ли существовать «чистая» причина, т.е. причина без следствия, которое еще не наступило, и «чистое» следствие, когда действие причины кончилось, а следствие еще продолжается? Что происходит в интервале между причиной и следствием, если они разделены во времени, и т.д.?

б) Проблема однозначности причинно-следственных отношений. Порождает ли одна и та же причина одно и то же следствие или же одна причина может порождать любое следствие из нескольких потенциально возможных? Может ли одно и то же следствие быть порожденным любой из нескольких причин?

в) Проблема обратного воздействия следствия на свою причину.

г) Проблема связи причины, повода и условий. Могут ли при определенных обстоятельствах причина и условие меняться ролями: причина стать условием, а условие – причиной? Какова объективная взаимосвязь и отличительные признаки причины, повода и условия?

Решение этих проблем зависит от выбранной модели, т.е. в значительной степени от того, какое содержание будет заложено в исходные категории «причина» и «следствие». Дефиниционный характер многих трудностей проявляется, например, уже в том, что нет единого ответа на вопрос, что следует понимать под «причиной». Одни исследователи под причиной мыслят материальный объект, другие – явление, третьи – изменение состояния, четвертые – взаимодействие и т.д.

К решению проблемы не ведут попытки выйти за рамки модельного представления и дать общее, универсальное определение причинно-следственной связи. В качестве примера можно привести следующее определение: «Причинность – это такая генетическая связь явлений, в которой одно явление, называемое причиной, при наличии определенных условий неизбежно порождает, вызывает, приводит к жизни другое явление, называемое следствием» . Это определение формально справедливо для большинства моделей, но, не опираясь на модель, оно не может разрешить поставленных проблем (например, проблему одновременности) и потому имеет ограниченную теоретико-познавательную ценность.

Решая упомянутые выше проблемы, большинство авторов стремятся исходить из современной физической картины мира и, как правило, несколько меньше внимания уделяют гносеологии. Между тем, на наш взгляд, здесь существуют две проблемы, имеющие важное значение: проблема удаления элементов антропоморфизма из понятия причинности и проблема непричинных связей в естествознании. Суть первой проблемы в том, что причинность как объективная философская категория должна иметь объективный характер, не зависящий от познающего субъекта и его активности. Суть второй проблемы: признавать ли причинные связи в естествознании всеобщими и универсальными или считать, что такие связи имеют ограниченный характер и существуют связи непричинного типа, отрицающие причинность и ограничивающие пределы применимости принципа причинности? Мы считаем, что принцип причинности имеет всеобщий и объективный характер и его применение не знает ограничений.

Итак, два типа моделей, объективно отражая некоторые важные стороны и черты причинно-следственных связей, находятся в известной степени в противоречии, поскольку различным образом решают проблемы одновременности, однозначности и др., но вместе с тем, объективно отражая некоторые стороны причинно-следственных отношений, они должны находиться во взаимной связи. Наша первая задача – выявить эту связь и уточнить модели.

Граница применимости моделей

Попытаемся установить границу применимости моделей эволюционного типа. Причинно-следственные цепи, удовлетворяющие эволюционным моделям, как правило, обладают свойством транзитивности . Если событие А есть причина события В (В – следствие А), если, в свою очередь, событие В есть причина события С, то событие А есть причина события С. Если А → В и В → С, то А → С. Таким способом составляются простейшие причинно-следственные цепи. Событие В может выступать в одном случае причиной, в другом – следствием. Эту закономерность отмечал Ф. Энгельс: «... причина и следствие суть представления, которые имеют значение, как таковые, только в применении к данному отдельному случаю: но как только мы будем рассматривать этот отдельный случай в общей связи со всем мировым целым, эти представления сходятся и переплетаются в представлении универсального взаимодействия, в котором причины и следствия постоянно меняются местами; то, что здесь или теперь является причиной, становится там или тогда следствием и наоборот» (т. 20, с. 22).

Свойство транзитивности позволяет провести детальный анализ причинной цепи. Он состоит в расчленении конечной цепи на более простые причинно-следственные звенья. Если А, то А → В 1 , В 1 → В 2 ,..., В n → C. Но обладает ли конечная причинно-следственная цепь свойством бесконечной делимости? Может ли число звеньев конечной цепи N стремиться к бесконечности?

Опираясь на закон перехода количественных изменений в качественные, можно утверждать, что при расчленении конечной причинно-следственной цепи мы столкнемся с таким содержанием отдельных звеньев цепи, когда дальнейшее деление станет бессмысленным. Заметим, что бесконечную делимость, отрицающую закон перехода количественных изменений в качественные, Гегель именовал «дурной бесконечностью»

Переход количественных изменений в качественные возникает, например, при делении куска графита. При разъединении молекул вплоть до образования одноатомного газа химический состав не меняется. Дальнейшее деление вещества без изменения его химического состава уже невозможно, поскольку следующий этап – расщепление атомов углерода. Здесь с физико-химической точки зрения количественные изменения приводят к качественным.

В приведенном выше высказывании Ф. Энгельса отчетливо прослеживается мысль о том, что в основе причинно-следственных связей лежит не самопроизвольное волеизъявление, не прихоть случая и не божественный перст, а универсальное взаимодействие. В природе нет самопроизвольного возникновения и уничтожения движения, есть взаимные переходы одних форм движения материи в другие, от одних материальных объектов к другим, и эти переходы не могут происходить иначе, чем через посредство взаимодействия материальных объектов. Такие переходы, обусловленные взаимодействием, порождают новые явления, изменяя состояние взаимодействующих объектов.

Взаимодействие универсально и составляет основу причинности. Как справедливо отмечал Гегель, «взаимодействие есть причинное отношение, положенное в его полном развитии» . Еще более четко сформулировал эту мысль Ф. Энгельс: «Взаимодействие – вот первое, что выступает перед нами, когда мы рассматриваем движущуюся материю в целом с точки, зрения теперешнего естествознания... Так естествознанием подтверждается то... что взаимодействие является истинной causa finalis вещей. Мы не можем пойти дальше познания этого взаимодействия именно потому, что позади его нечего больше познавать» (т. 20, с. 546).

Поскольку взаимодействие составляет основу причинности, рассмотрим взаимодействие двух материальных объектов, схема которого приведена на рис. 1. Данный пример не нарушает общности рассуждений, поскольку взаимодействие нескольких объектов сводится к парным взаимодействиям и может быть рассмотрено аналогичным способом.

Нетрудно видеть, что при взаимодействии оба объекта одновременно воздействуют друг на друга (взаимность действия). При этом происходит изменение состояния каждого из.взаимодействующих объектов. Нет взаимодействия – нет изменения состояния . Поэтому изменение состояния какого-либо одного из взаимодействующих объектов можно рассматривать как частное следствие причины – взаимодействия. Изменение состояний всех объектов в их совокупности составит полное следствие.

Очевидно, что такая причинно-следственная модель элементарного звена эволюционной модели принадлежит классу структурных (диалектических). Следует подчеркнуть, что данная модель не сводится к подходу, развивавшемуся Г.А. Свечниковым, поскольку под следствием Г.А. Свечников, по словам В.Г. Иванова, понимал «...изменение одного или всех взаимодействовавших объектов или изменение характера самого взаимодействия, вплоть до его распада или преобразования» . Что касается изменения состояний, то это изменение Г.А. Свечников относил к непричинному виду связи.

Итак, мы установили, что эволюционные модели в качестве элементарного, первичного звена содержат структурную (диалектическую) модель, опирающуюся на взаимодействие и изменение состояний. Несколько позже мы вернемся к анализу взаимной связи, этих моделей и исследованию свойств эволюционной модели. Здесь нам хотелось бы отметить, что в полном соответствии с точкой зрения Ф. Энгельса смена явлений в эволюционных моделях, отражающих объективную реальность, происходит не в силу простой регулярности событий (как у Д. Юма), а в силу обусловленности, порожденной взаимодействием (генезис). Поэтому хотя ссылки на порождение (генезис) и привносятся в определение причинно-следственных отношений в эволюционных моделях, но они отражают объективную природу этих отношений и имеют законное основание.

Pис. 2. Структурная (диалектическая) модель причинности

Вернемся к структурной модели. По своей структуре и смыслу она превосходно согласуется с первым законом диалектики – законом единства и борьбы противоположностей, если интерпретировать:

– единство – как существование объектов в их взаимной связи (взаимодействии);

– противоположности – как взаимоисключающие тенденции и характеристики состояний, обусловленные взаимодействием;

– борьбу – как взаимодействие;

– развитие – как изменение состояния каждого из взаимодействующих материальных объектов.

Поэтому структурная модель, опирающаяся на взаимодействие как причину, может быть названа также диалектической моделью причинности. Из аналогии структурной модели и первого закона диалектики следует, что причинность выступает как отражение объективных диалектических противоречий в самой природе, в отличие от субъективных диалектических противоречий, возникающих в сознании человека. Структурная модель причинности есть отражение объективной диалектики природы.

Рассмотрим пример, иллюстрирующий применение структурной модели причинно-следственных отношений. Таких примеров, которые объясняются с помощью данной модели, можно найти достаточно много в естественных науках (физике, химии и др.), поскольку понятие «взаимодействие» является основополагающим в естествознании.

Возьмем в качестве примера упругое столкновение двух шаров: движущегося шара А и неподвижного шара В. До столкновения состояние каждого из шаров определялось совокупностью признаков Сa и Сb (импульс, кинетическая энергия и т.д.). После столкновения (взаимодействия) состояния этих шаров изменились. Обозначим новые состояния С"a и С"b. Причиной изменения состояний (Сa → С"a и Сb → С"b) явилось взаимодействие шаров (столкновение); следствием этого столкновения стало изменение состояния каждого шара.

Как уже говорилось, эволюционная модель в данном случае малопригодна, поскольку мы имеем дело не с причинной цепью, а с элементарным причинно-следственным звеном, структура которого не сводится к эволюционной модели. Чтобы показать это, проиллюстрируем данный пример объяснением с позиции эволюционной модели: «До столкновения шар А покоился, поэтому причиной его движения является шар В, который ударил по нему». Здесь шар В выступает причиной, а движение шара А – следствием. Но с тех же самых позиций можно дать и такое объяснение: «До столкновения шар В двигался равномерно по прямолинейной траектории. Если бы не шар А, то характер движения шара В не изменился бы». Здесь причиной уже выступает шар А, а следствием – состояние шара В. Приведенный пример показывает:

а) определенную субъективность, которая возникает при применении эволюционной модели за пределами границ ее применимости: причиной может выступать либо шар А, либо шар В; такое положение связано с тем, что эволюционная модель выхватывает одну частную ветвь следствия и ограничивается ее интерпретацией;

б) типичную гносеологическую ошибку. В приведенных выше объяснениях с позиции эволюционной модели один из однотипных материальных объектов выступает в качестве «активного», а другой – в качестве «страдательного» начала. Получается так, будто один из шаров наделен (по сравнению с другим) «активностью», «волей», «желанием», подобно человеку. Следовательно, только благодаря этой «воле» мы и имеем причинное отношение. Подобная гносеологическая ошибка определяется не только моделью причинности, но и образностью, присущей живой человеческой речи, и типичным психологическим переносом свойств, характерных для сложной причинности (о ней мы будем говорить ниже) на простое причинно-следственное звено. И такие ошибки весьма характерны при использовании эволюционной модели за пределами границ ее применимости. Они встречаются в некоторых определениях причинности. Например: «Итак, причинность определяется как такое воздействие одного объекта на другой, при котором изменение первого объекта (причина) предшествует изменению другого объекта и необходимым, однозначным образом порождает изменение другого объекта (следствие)» . Трудно согласиться с таким определением, поскольку совершенно не ясно, почему при взаимодействии (взаимном действии!) объекты должны деформироваться не одновременно, а друг за другом? Какой из объектов должен деформироваться первым, а какой вторым (проблема приоритета)?

Качества модели

Рассмотрим теперь, какие качества удерживает в себе структурная модель причинности. Отметим среди них следующие: объективность, универсальность, непротиворечивость, однозначность.

Объективность причинности проявляется в том, что взаимодействие выступает как объективная причина, по отношению к которой взаимодействующие объекты являются равноправными. Здесь не остается возможности для антропоморфного истолкования. Универсальность обусловлена тем, что в основе причинности всегда лежит взаимодействие. Причинность универсальна, как универсально само взаимодействие. Непротиворечивость обусловлена тем, что, хотя причина и следствие (взаимодействие и изменение состояний) совпадают во времени, они отражают различные стороны причинно-следственных отношений. Взаимодействие предполагает пространственную связь объектов, изменение состояния – связь состояний каждого из взаимодействующих объектов во времени.

Помимо этого структурная модель устанавливает однозначную связь в причинно-следственных отношениях независимо от способа математического описания взаимодействия. Более того, структурная модель, будучи объективной и универсальной, не предписывает естествознанию ограничений на характер взаимодействий. В рамках данной модели справедливы и мгновенное дально- или близкодействие, и взаимодействие с любыми конечными скоростями. Появление подобного ограничения в определении причинно-следственных отношений явилось бы типичной метафизической догмой, раз и навсегда постулирующей характер взаимодействия любых систем, навязывая физике и другим наукам натурфилософские рамки со стороны философии, либо ограничило пределы применимости модели настолько, что польза от такой модели оказалась бы весьма скромной.

Здесь уместно было бы остановиться на вопросах, связанных с конечностью скорости распространения взаимодействий. Рассмотрим пример. Пусть имеются два неподвижных заряда. Если один из зарядов начал двигаться с ускорением, то электромагнитная волна подойдет ко второму заряду с запаздыванием. Не противоречит ли данный пример структурной модели и, в частности, свойству взаимности действия, поскольку при таком взаимодействии заряды оказываются в неравноправном положении? Нет, не противоречит. Данный пример описывает не простое взаимодействие, а сложную причинную цепь, в которой можно выделить три различных звена.

В следствии общности и широты своих законов, физика всегда оказывала воздействие на развитие философии и сама находилась под ее влиянием. Открывая новые достижения, физика не оставляла философские вопросы: о материи, о движении, об объективности явлений, о пространстве и времени, о причинности и необходимости в природе. Развитие атомистики привело Э.Резерфорда к открытию атомного ядра и к...

Закон Дарси справедлив при соблюдении следующих условий:

a) пористая среда мелкозерниста и поровые каналы достаточно узки;

b) скорость фильтрации и градиент давления малы;

с) изменение скорости фильтрации и градиента давления малы.

При повышении скорости движения жидкости закон Дарси нарушается из-за увеличения потерь давления на эффекты, связанные с инерционными силами: образование вихрей, зон срыва потока с поверхности частиц, гидравлический удар о частицы и т.д. Это так называемая верхняя граница . Закон Дарси может нарушаться и при очень малых скоростях фильтрации в процессе начала движения жидкости из-за проявления неньютоновских реологических свойств жидкости и её взаимодействия с твёрдым скелетом пористой среды. Это нижняя граница.

Верхняя граница. Критерием верхней границы справедливости закона Дарси обычно служит сопоставление числа РейнольдсаRe=war/h с его критическим значением Re кр, после которого линейная связь между потерей напора и расходом нарушается. В выражении для числа Re:

w -характерная скорость течения:

а - характерный геометрический размер пористой среды;

r - плотность жидкости.

Имеется ряд представлений чисел Рейнольдса, полученных различными авторами при том или ином обосновании характерных параметров. Приведём некоторые из данных зависимостей наиболее употребляемые в подземной гидромеханике:

а) Павловского

Критическое число РейнольдсаRe кр =7,5-9 .

б) Щелкачёва

(1.31)

Критическое число Рейнольдса Re кр =1-12 .

в) Миллионщикова

(1.32)

Критическое число Рейнольдса Re кр =0,022-0,29 .

Скорость фильтрации u кр, при которой нарушается закон Дарси, называется критической скоростью фильтрации . Нарушение скорости фильтрации не означает перехода от ламинарного движения к турбулентному, а вызвано тем, что силы инерции, возникающие в жидкости за счёт извилистости каналов и изменения площади сечения, становятся при u>u кр соизмеримы с силами трения.

При обработке экспериментальных данных для определения критической скорости пользуются безразмерным параметром Дарси :

, (1.33)

представляющим отношение сил вязкого трения к силе давления. В области действия закона Дарси данный параметр равен 1 и уменьшается при превышении числа Re критического значения.

Нижняя граница. При очень малых скоростях с ростом градиента давления (изменение давления с глубиной) увеличение скорости фильтрации происходит более быстро, чем по закону Дарси. Данное явление объясняется тем, что при малых скоростях становится существенным силовое взаимодействие между твердым скелетом и жидкостью за счет образования аномальных, неньютоновских систем, н.п. устойчивые коллоидные растворы в виде студнеобразных плёнок, перекрывающих поры и разрушающихся при некотором градиенте давленияt н , называемого начальным и зависящим от доли глинистого материала и величины остаточной водонасыщенности. Имеется много реологических моделей неньютоновских жидкостей, наиболее простой их них является модель с предельным градиентом

(1.34)

1.3.1.4. Законы фильтрации при Re > Re кр

От точности используемого закона фильтрации зависит достоверность данных исследования скважин и определение параметров пласта. В связи с этим в области нарушения действия закона Дарси необходимо введение более общих, нелинейных законов фильтрации. Данные законы разделяются на одночленные и двухчленные.

1. Моделирование обеспечивает создание упрощенной, по сравнению с оригиналом, модели. В модели меньше второстепенной информации, чем в оригинале. В модели сосредотачивается информация на тех признаках, которые необходимы для расследования.

«Слепок следа» для нас важно, чтобы он отражал наиболее полно и точно особенности подошвы (протектор, рисунок, изношенность, повреждения и т. д.) другие признаки менее интересны, цвет материала и т.д.

Модель проще оригинала, она отвлекается от деталей, частностей и этим помогает решению познавательных задач.

В моделировании упрощение обуславливает широкое ее применение (составление планов местности, схем-преступлений связей, составление графиков).

ПРОСТОЕ - это доступное, понятное, состоящее из незначительного количества элементов, отношений.

СЛОЖНОЕ-наоборот-трудное для познания.

Человечество всегда пыталось привести сложное к простому и понятному. В математике есть термин «упростить выражение», когда громоздкая формула приводится к простой.

Все гениальное просто, а простое-гениально.

2. Для некоторых видов моделирования характерна НАГЛЯДНОСТЬ.

Наглядность моделей с чувственным восприятием и образным отражением предметов и явлений в сознании. Они оживляют память, способствуют уяснению существа изучаемых фактов и явлений.

«План-схемы» при допросе свидетелей, потерпевших, обвиняемых.

Допрос водителей и других участников ДТП с воссозданием дорожной ситуации с применением специальных планшетов, моделей и т.д.

Следственное действие- проверка показаний на месте говорит само за себя и применяется достаточно часто.

3 Модели выполняют иллюстративную функцию. Служат наглядным подтверждением доказываемых положений.

К протоколу осмотра - планы, схемы.

К акту СМЭ - схемы человека с имеющимися повреждениями.

К акту баллистической экспертизы-фотографии совмещений.

К акту дактилоскопической экспертизы-фотографии отпечатков с указанием совпадений стрелками.

Создание и изучение моделей способствуют, прежде всего, проверке имеющейся и получению новой информации.

Для расследования уголовных дел типичен познавательный, поисковый характер исследования.

Это объясняется тем, что фактор времени оказывает свое влияние на следы преступления: иногда благоприятствуют их уничтожению, сокрытию, равно как сокрытию самого преступления, так и лица, совершившего его. Модели и моделирование восстанавливают события преступления и их участников.

Главной и основной чертой криминалистического моделирования является выражение в этом методе закономерностей всеобщей связи предметов и явлений.

Моделирование базируется на законах отражения и всеобщей связи в силу модели и моделирования включаются в процесс познания.

Основанность на законах обуславливает научность метода и позволяет использовать его как метод доказывания.

Таким образом, результаты моделирования могут использоваться в качестве доказательств и ложиться в основу обвинительного заключения или приговора.

Цель урока

Продолжить обсуждение дифракции волн, рассмотреть проблему границ применимости геометрической оптики, сформировать умения по качественному и количественному описанию дифракционной картины, рассмотреть практические применения дифракции света.

Данный материал обычно рассматривается вскользь в рамках изучения темы «Дифракция света» в связи с нехваткой времени. Но, на наш взгляд, его необходимо рассматривать для более глубокого понимания явления дифракции, понимания, что любая теория, описывающая физические процессы, имеет границы применимости. Поэтому этот урок можно провести в базовых классах вместо урока решения задач, так как математический аппарат для решения задач по этой теме достаточно сложен.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Повторение изученного материала 6 Фронтальный опрос
3 Объяснение нового материала по теме «Границы применимости геометрической оптики» 15 Лекция
4 Закрепление изученного материала с помощью компьютерной модели 15 Работа на компьютере с рабочими листами. Модель «Дифракционный предел разрешения»
5 Анализ проделанной работы 5 Фронтальная беседа
6 Объяснение домашнего задания 2

Повторение изученного материла

Фронтально повторить вопросы по теме «Дифракция света».

Объяснение нового материла

Границы применимости геометрической оптики

Все физические теории отражают происходящие в природе процессы приближенно. Для любой теории могут быть указаны определенные границы ее применимости. Можно ли применять в конкретном случае данную теорию или нет, зависит не только от той точности, которую обеспечивает теория, но и от того, какая точность требуется при решении той или иной практической задачи. Границы теории можно установить лишь после того, как построена более общая теория, охватывающая те же явления.

Все эти общие положения относятся и к геометрической оптике. Эта теория является приближенной. Она неспособна объяснить явления интерференции и дифракции света. Более общей и более точной теорией является волновая оптика. Закон прямолинейного распространения света и другие законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны. Но совершенно точно они не выполняются никогда.

Действие оптических приборов описывается законами геометрической оптики. Согласно этим законам, мы можем различать с помощью микроскопа сколь угодно малые детали объекта; с помощью телескопа можно установить существование двух звезд при любых, как угодно малых угловых расстояниях между ними. Однако в действительности это не так, и лишь волновая теория света позволяет разобраться в причинах предела разрешающей способности оптических приборов.

Разрешающая способность микроскопа и телескопа.

Волновая природа света ограничивает возможность различения деталей предмета или очень мелких предметов при наблюдении с помощью микроскопа. Дифракция не позволяет получить отчетливые изображения мелких предметов, так как свет распространяется не строго прямолинейно, а огибает предметы. Из-за этого изображения получаются «размытыми». Это происходит, когда линейные размеры предметов сравнимы с длиной световой волны.

Дифракция налагает также предел на разрешающую способность телескопа. Вследствие дифракции волн изображением звезды будет не точка, а система светлых и темных колец. Если две звезды находятся на малом угловом расстоянии друг от друга, то эти кольца налагаются друг на друга и глаз не в состоянии различить, имеются ли две светящиеся точки или одна. Предельное угловое расстояние между светящимися точками, при котором их можно различать, определяется отношением длины волны к диаметру объектива.

Этот пример показывает, что дифракция происходит всегда, на любых препятствиях. Ею при очень тонких наблюдениях нельзя пренебрегать и для препятствий, по размеру значительно больших, чем длина волны.

Дифракция света определяет границы применимости геометрической оптики. Огибание светом препятствий налагает предел на разрешающую способность важнейших оптических инструментов – телескопа и микроскопа.

«Дифракционный предел разрешения»

Рабочий лист к уроку

Примерные ответы
«Дифракция света»

Фамилия, имя, класс ______________________________________________

    Выставьте диаметр отверстия 2 см, угловое расстояние между источниками света 4,5 ∙ 10 –5 рад . Изменяя длину волны, определите, начиная с какой длины волны изображение двух источников света будет невозможно различить, и они будут восприниматься как один.

    Ответ: примерно с 720 нм и длиннее .

    Как зависит предел разрешения оптического прибора от длины волны наблюдаемых объектов?

    Ответ: чем длиннее волна, тем меньше предел разрешения .

    Какие двойные звезды – голубые или красные – мы можем обнаружить на большем расстоянии современными оптическими телескопами?

    Ответ: голубые .

    Выставьте минимальную длину волны, не меняя расстояния между источниками света. При каком диаметре отверстия изображение двух источников света будет невозможно различить, и они будут восприниматься как один?

    Ответ: 1,0 см и меньше .

    Повторите опыт с максимальной длиной волны.

    Ответ: примерно 2 см и меньше .

    Как зависит предел разрешения оптических приборов от диаметра отверстия, через которое проходит свет?

    Ответ: чем меньше диаметр отверстия, тем меньше предел разрешения .

    Какой телескоп – с линзой большего диаметра или меньшего – позволит рассмотреть две близкие звезды?

    Ответ: с линзой большего диаметра .

    Найдите экспериментально, на каком минимальном расстоянии друг от друга (в угловой величине – радианах) можно различить изображение двух источников света в данной компьютерной модели?

    Ответ: 1,4∙10 –5 рад .

    Почему в оптический микроскоп нельзя увидеть молекулы или атомы вещества?

    Ответ: если линейные размеры наблюдаемых предметов сравнимы с длиной световой волны, то дифракция не позволит получить их отчетливые изображения в микроскопе, так как свет распространяется не строго прямолинейно, а огибает предметы. Из-за этого изображения получаются «размытыми» .

    Приведите примеры, когда необходимо учитывать дифракционный характер изображений.

    Ответ: при всех наблюдениях в микроскоп или телескоп, когда размеры наблюдаемых предметов сравнимы с длиной световой волны, при малых размерах входного отверстия телескопов, при наблюдениях в диапазоне длинных красных волн объектов, расположенных на малых угловых расстояниях друг от друга .